THE JUNE 29/30, 2021
OCCULTATION BYTHE BINARY ASTEROID (4337) ARECIBO. CAN WE CONSTRAIN THE SATELLITE ORBITAL PARAMETERS?

IOTA ANNUAL MEETING JULY 17, 2021 RICHARD NOLTHENIUS, PHD CHAIR, DEPT OF ASTRONOMY CABRILLO COLLEGE, SANTA CRUZ, CA

THE PERFECT PATH? CROSSING THE U.S. COAST TO COAST, PROMISING A LARGE TURNOUT OF OBSERVERS. 12.7 MAGNITUDE STAR 25 DEGREES UP IN THE SOUTHERN MILKY WAY


## CROSSING THE BAY AREA, ARIZONA, OK, AND MARYLAND - ALL HOT BEDS OF ASTEROID OCCULTATION ENTHUSIASM!

(4337) Arecibo occults UCAC4 323-113857 on 30 Jun 2021


MY 3-MAN TEAM WAS ALL SOUTH OF THE CENTERLINE. THE WIND DIRECTION WAS ~PERPENDICULAR TO THE EVENT AZIMUTH, ALLOWING THE POSSIBILITY OF WIND PROTECTION


JUNE 9 EVENT: GOOD SEEING, 2X BRIGHTER STAR (V=12.0), NO WIND, ALLOWED GOOD S/N. BELOW IS THE PYMOVIE LIGHT CURVE FOR NOLTHENIUS. CONTRAST THIS WITH THE TOUGHER JUNE 29 EVENT...
target signal (background subtracted) at frame 4282.0: intensity=188 mask_pixels=11 timestamp=[10:58:30.6046]


35 KNOT WINDS, POOR SEEING, BRIGHTER SKIES, 25 DEGREES ALTITUDE, AND A STAR AT ½ THE BRIGHTNESS OF THE JUNE 9 EVENT. SO, IT WAS A CHALLENGE....

WE ALSO HAD TO WORRY ABOUT POSITIONING TO AVOID CLOUDS... WHICH ACTUALLY NEVER SHOWED UP. CLEAN SKIES FOR ALL.


WIND WORSENED. I MOUNTED A TABLE ON CAR ROOF, LASHED LEGS TO BIKE CARRIER. THAT HELD THROUGH THE EVENT, BUT SHORTLY AFTER, IT WORKED LOOSE AND FLEW OVER THE TELESCOPE, KNOCKING ME OVER AS I STOOD ON THE NEAR SIDE OF THIS PICTURE AT THAT TIME. RISKING LIFE/LIMB FOR SCIENCE!

NOLTHENIUS DATA: TARGET STAR IN RED. WORST WIND GUSTS STARTED JUST ~5 SEC AFTER THE EVENT. PYMOVIE LOST ACQUISITION OF EVEN THE BRIGHT TRACKING STAR AT THESE TIMES. NO EVIDENCE OF SATELLITE OCCULTATION. BENDER, NEARBY, BETTER CONFIRMS.


ZOOMED IN ON OCCULTATION MOMENT. 8X INTEGRATION ON WATEC 910HX, 8" CELESTRON 8SE WITH F/3.3 REDUCER. NOLTHENIUS RAW LIGHT CURVE FROM PYMOVIE

T- PyMovie 3.0 .0 lightcurve for aperture: target
4 points per integration ( $8 x$ setting)
target signal (background subtracted) at frame 6050.0: intensity=191 mask_pixels=54 timestamp=[05:58:04.7449]



## FORMAL FALSE-POSITIVE ERROR HISTOGRAM FROM PYOTE ON NOLTHENIUS DATA. FALSE POSITIVE PROBABILITY TINY, but Non-ZERO

Distribution of edge ( $)$ errors due to noise
Distribution of duration ( $R-D$ ) errors due to onose
$[-1.01,0.50] @ 0.6827$
$[-3.89,243] @ 0.95$
$-[-9.51,7.43] @ 0.9973$
$-[-1.34,1.1 .66] @ 0.6827$
$[-4.57,4.64] @ 0.95$
$[-10.41,10.87] @ 0.9973$
des ine: the drop $(B-A)$ extracted from lightcurve
black line: max drop found din 50000 trials gaginst pure noise
-If the red line is to the right of the black line, false positive prob $=0$

- Wind shake events left in the .csv data analyzed by PyOTE
- These are clearly wind-shake: All stars shook and lost acquisition!
- Current coding does not permit using the calm periods data if it is not contiguous with the event,
- This pushes the PyOTE decided false-positive probability higher than necessary (99.995\% certain of a positive, is this the criterion??)


## IN ADDITION TO KIRK BENDER, WE ADDITIONALLY HAD DR. CHRIS KITTING...

- Chris is a professor of marine biology at CSU East Bay, and was going to be inside the occultation path doing marine research in the Delta region he set up at, near Oakley, and brought his astro equipment along, and took time out to get the occultation.
- He's occasionally done other high-value occultation attempts in the past, and his 10 " Newtonian had good light gathering for this difficult event.
- Getting the data from his Sony DV camcorder to his Mac computer and then analyzed into a CSV file was a challenge, due to driver errors and the general trouble we've/had in transfers into computers... but ultimately successful.
- He spent much time away from his research to contribute to this campaign and deserves our thanks.


## KITTING'S LIGHT CURVE, ZOOMED IN ON EVENT (OTHER DATAIN WINGS NOT SHOWN). NO EVIDENCE OF THE SATELLITE.

Analyzed file name [ OldAdanArecibo shrt 062921 Kitting, Oakley, CA.avi] Photometry in each Frame


red line: the drop $(B-A)$ extracted from lightcurve
black line: max drop found in 50000 trials gaginst pure noise
If the red line is to the right of the black line, false positive prob $=0$

## KITTING'S FALSE-POSITIVE HISTOGRAM. SOLID!

- $10^{\prime \prime} \mathrm{f} / 4.5$ Newtonian, Watec 910 hx with IOTA VTI. Sony video-cam for recording MiniDV.
- Clear, slight breeze but did not interfere with stability.
- Left on $16 x$ in the rush; could have done $8 x$ or even $4 x$.

KIRK BENDER'S PYMOVIE LIGHT CURVE. MUCH LESS WIND TROUBLE. 4X SETTING, IDENTICAL EQUIPMENT AS NOLTHENIUS. ANY SATELLITE EVENT WOULD HAVE TO HAVE BEEN ONLY A SMALL FRACTION OF A SECOND IN DURATION. 3 MINUTE TOTAL RECORDING DURATION.


## I'M EXTREMELY IMPRESSED WITH PYMOVIE'S ABILITY TO GET SIGNIFICANTLY HIGHER SIGNAL OUT OF ATMOSPHERICALLY CHALLENGED DATA, VS. LIMOVIE.

- I was skeptical at first, but have become a convert of its remarkable adaptive skills in allowing maximum extraction of data from our recordings. Occultationists should be using PyMovie


## - But I do have suggestions for PyMovie, PyOTE...

- 1. Allow observer to surgically delete brief periods of wind shake (or tripod-tripping, etc.) out of CSV record. Modify "trim" feature in PyMovie to allow this
- 2. When selecting the $D$ and $R$ regions for PyOTE to search, allow the bottom of the occultation to be used for both the D region and the R region. Currently, it forbids this. A good sampling of occulted vs unocculted can only help better determine the $D$ and $R$ moments.
- 3. In PyOTE, allow the observer to select an arbitrary smoothing length for using the comparison star in the light curve of the target. Why? Because long integration times and fast moving clouds can require the smoothing time to be much less than 30 data points, which is the current lower limit.
USING THE SKY SAFARI APP ON KIRK'SIPHONE - SHOWS THE ASTEROID AND HORIZON AT USERSPECIFIED TIME, ALLOWING CONFIDENCE OF A CLEAR HORIZON VIEW AT EVENT TIME


## THE SATELLITE POSITION WAS SIMILAR FOR BOTH THE MAY 19/20 DISCOVERY AND THE JUNE 9 EVENT 20.708 DAYS LATER.

ANOTHER 20.788 DAYS LATER, WE HAVE THE MOMENT OF OUR $3^{\text {RD }}$ EVENT: JUNE 29.
WOULD THE SATELLITE BE IN A SIMILAR POSITION AGAIN?


TAKING OUR FORMAL JUNE 29/30 EVENT
TIMINGS GIVES A PRETTY
ELONGATED MAIN
BODY... BUT THE TIMING ACCURACIES ON THIS
BRIEF 1.9 SEC DIFFICULT
EVENT EASILY ALLOW A MORE LIKELY FIT:

## A CIRCLE WORKS

FINE... (NEXT SLIDE)

THE SKYPLANE PLOTTED RESULT:

## ALAS, NO SATELLITE HIT

TED SWIFT NEAR DIXON, AND H. THROOP<br>FARTHER EAST, SAW MISSES.

## OUR D, R TIMES NOT ACCURATE ENOUGH TO SAY MUCH ABOUT THE POSSIBILITY WE SAW A BLENDED IMAGE OF ARECIBO + MOON.

- However, if not a blended image, then the small formal errors on the Arecibo main body path suggest...
- ... the moon would likely be north of the main body, since our best fit shows the main body centered significantly south of the centerline, unlike at the prior two events where main body was significantly closer to the centerline
- But if the satellite were as close in the north/south direction as for the May 19 Gault/Nosworthy discovery and the June 9 Nolthenius/Bender confirmation, then there's precious little space for that satellite to have escaped our June 29/30 net...


## THE WELL MEASURED DIAMETER AT THE JUNE 9 EVENT SAYS THE SATEELITE WAS 13.2 KM IN DIAMETER AND NEARLY CIRCULAR. THEREFORE...


center of satellite must be within cross-hatched areas


THE NOLTHENIUS/BENDER JUNE 9 TRACKS WERE SELECTED TO GET THE MAIN BODY. THE GALT/NOSWORTHY MAY 19 (FIXED SITES) ENDED UP MIMICING THIS TOO, SO THE FACT THE SATELLITE WAS CLOSE TO THE MAIN BODY FOR BOTH OF THESE EVENTS DOESN’T NECESSARILY IMPLY THE SATELLITE IS IN A CLOSE ORBIT... THEY'RE NOT RANDOM TRACKS


## SO, HOW FAR AWAY COULD THAT MOON BE?

- The absolute limit is the Hill Radius; gotten by matching the centrifugal force in the asteroid orbit to the gravity from the attractor (the sun). Arecibo's orbit around the sun is nearly circular ( $\mathrm{e}=.09$ ).
- The speed of the shadow translates to $10.2 \mathrm{~km} / \mathrm{sec}$.
- Assuming an outer belt representative density of $\sim 1.9 \mathrm{~g} / \mathrm{cm}^{3}$, then the Hill radius of 8700 km corresponds to 850 sec or 14 minutes! Beyond our +- 1.5 minute recording period.
- However, the large majority of asteroid satellites orbit within the $\sim 47$ main body diameters (of 24 km ) we recorded.
- If the satellite orbit is elliptical, then the limit could be smaller, since it's the farthest point that controls here, not $a$ itself.


## ARECIBO IN ITS ORBIT AT EVENT TIME

## At Time of June 29/30 Event



## ORBITAL PERIOD:



IF THE ORBIT IS REASONABLY LARGER THAN THE SEPARATIONS HERE, THEN THE VERY CLOSE MATCH IN TIME INTERVALS FROM THE MAY 19->JUNE 9 -> JUNE 29 EVENTS (20.708 DAYS VS. 20.788 DAYS) SUGGESTS A SIMPLE EXTRAPOLATION PUTS THE SATELLITE AT THE PURPLE POSITION FOR OUR JUNE 29 EVENT.


FOR A DIAMETER OF 13 KM, THE SATELLITE CENTEROID MUST BE WITHIN THE BANDS OF CROSSHATCH IN ORDER TO NOT HAVE PRODUCED AN OCCULTATION AT THE SUCCESSFULLY RECORDED SITES. IT'S TEMPTING TO INFER P~20.0 DAYS, BUT IT COULD BE AN INTEGER FRACTION OF THAT, OR EVEN PERHAPS 2 OR 3 TIMES HIGHER.

## ASSUMING A TYPICAL DENSITY OF 1.9 G/CM³ GIVES MASS OF SYSTEM $=11.9 \times 10^{18} \mathrm{~g}$

- Then let's assume an orbital semi-major axis of $a=100$ km $=^{\sim} 2 x$ the Gault/Nosworthy position, projected onto sky.
- Then Kepler's $3^{\text {rd }}$ Law gives...
- orbital period of only ~2.58 days (P proportional to $a^{1.5}$
- But poorly constrained by our sparse data...

THERE'S A 50\% CHANCE THE SATELLITE WAS ON THE SAME SIDE OF THE SKY PLANE AT BOTH THE MAY 19 AND JUNE 9 EVENTS (AND A 50\% CHANCE IT WASN'T).

- If on the same side, then it argues the orbital period is an integer fraction of $\sim 20$ days
- So; $10,6.667,5,4,3.333,2.857,2.5,2.222$ days are possible.
- Unlikely less than that as it strains the position at the June 9 event.
- If the satellite was on opposite sides of the sky plane at the May 19 and June 9 event, It could also be 40 days, or even 60 days.


## THE BEST WAY?... FIND THE PHOTOMETRIC PERIOD OF (4337) ARECIBO.

- Tidal locking is likely, so that any ellipticity or varying albedo should produce a photometric period = orbital period of satellite.
- The Johnston data base gives the most up to date information I can find on (4337) Arecibo.
- No photometric period is given.
- But the PANSTARRs database should have many observations of this asteroid, if deep enough (Arecibo rarely exceeds $17^{\text {th }}$ magnitude).
- And the SuperWASP database was used to help classify variable stars from their periodograms, and may also have solar system objects (with their varying positions) also available. Not all data is publicly available. A quick look did not show me how to get asteroid photometry data.


## $2^{\text {ND }}$ BEST WAY - GET ONE MORE OCCULTATION

- While it's true the mass of the objects is not a given and therefore we really need 4 observations to fix an orbit, still - it's reasonable to guess a typical density, hence mass, and then have a good set of guesses for the position at future occultations, for placing observers.
- The period P only varies with the square root of the system mass M , and so is not very sensitive to the assumed density - this is good.
- But it also means for the interesting science, we need a very well-determined orbit. But, for the near term, our goal is to optimally guess how to place observers at future events.


## IT’S POSSIBLE THE PAIR PRODUCE MUTUAL ECLIPSES, SUGGESTIVE FROM THE SKY PLANE PLOT

- Eclipses have a distinctive light curve and so good enough photometric data could distinguish that from, say, an albedo variation or shape variation.
- If a good case of multiple eclipses were seen, it would provide the period unambiguously


## ANOTHER WAY: GET THE VELOCITY OF THE SATELLITE WITH JUST ONE MORE OCCULTATION

- For a Period of 2.5 days, the satellite moves its own 13 km diameter every ~48 minutes
- With another cross country or intercontinental path, we could, with good timings, get a handle on the velocity of the satellite. This could rule out many of the possible periods.
- For this, I suggest a good strategy would be for at least two of the widely spaced observers to be on the same track, to minimize topographic variation-caused time differences, and isolate the velocity.
(4337) ARECIBO WILL REMAIN IN THE MILKY WAY FOR SEVERAL MORE MONTHS - HRISTO'S NEW OCCULT-WATCHER CLOUD SITE HAS MANY MORE PREDICTIONS. NOTE: CABRILLO COLLEGE OBSERVATORY HAS A 12.5" SCT (FIXED, ALAS) WITH WATEC 910HX CAPABILITY.



## LAST SLIDE: SCIENTIFIC VALUE

- There are currently only 201 main belt asteroids with known satellites.
- With firm periods and orbital sizes, you can calculate the mass of the objects.
- Mass and size give density, and thus a giant step towards likely composition
- Multi- \$Million pick-up-surface-and-bring-home missions, like Hayabusa, only get what's on the surface, which could be detritus from environment and not represent the bulk of the asteroid.
- Are they made of mostly ice? Mostly light rock? Dense rock? Carbon? (carbon rich asteroid surfaces in the outer Main Belt), puff balls of dust with empty space... pixy dust??


## OK, THE FINAL LAST SLIDE...

- An earlier version of this Presentation was hurried together before the IOTA meeting in July 2021 and video recorded and posted on YouTube.
- That version erroneously neglected the sun as the major tidal disruptor, instead fixating on Jupiter. Enjoy my live performance - but disregard the Jupiter material! The material in this version, more easily available for me to edit, should be the most reliable source

